VI. Decision Trees

- Decision Trees Basics
- Impurity Functions
- Decision Tree Algorithms
- Decision Tree Pruning
Decision Tree Algorithms

ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:

- X is a multiset of feature vectors.
- C is a set of classes.
- $D = \{(x_1, c_1), \ldots, (x_n, c_n)\} \subseteq X \times C$ is a multiset of examples.

Learning task:

- Fit D using a decision tree T.
Decision Tree Algorithms

ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:

- X is a multiset of feature vectors.
- C is a set of classes.
- $D = \{(x_1, c_1), \ldots, (x_n, c_n)\} \subseteq X \times C$ is a multiset of examples.

Learning task:

- Fit D using a decision tree T.

Characteristics of the ID3 algorithm:

1. Each splitting is based on one nominal feature and considers its complete domain. Splitting based on feature A with domain $\text{dom}(A) = \{a_1, \ldots, a_m\}$:
 $$X = \{x \in X : x|_A = a_1\} \cup \ldots \cup \{x \in X : x|_A = a_m\}$$

2. Splitting criterion is information gain.
ID3 Algorithm (continued) [Mitchell 1997 version] [algorithm template]

ID3(D, Features)

1. Create a node t for the tree.
2. Label t with the most common class in D.
3. If all examples in D have the same class, return the single-node tree t.
4. If Features is empty, return the single-node tree t.
ID3 Algorithm (continued) [Mitchell 1997 version] [algorithm template]

ID3(D, Features)

1. Create a node t for the tree.
2. Label t with the most common class in D.
3. If all examples in D have the same class, return the single-node tree t.
4. If Features is empty, return the single-node tree t.

Otherwise:

5. Let A* be the feature from Features that best classifies examples in D.
 Assign t the decision feature A*.

6. For each possible value “a” in dom(A*) do:
 - Add a new tree branch below t, corresponding to the test A* = “a”.
 - Let D_a be the subset of D that has value “a” for A*.
 - If D_a is empty:
 Then add a leaf node with the label of the most common class in D.
 Else add the subtree ID3(D_a, Features \ {A*}).

7. Return t.
Decision Tree Algorithms
ID3 Algorithm (continued) [algorithm template]

\[ID3(D, Features) \]

1. \(t = createNode() \)
2. \(\text{label}(t) = mostCommonClass(D) \)
3. \(\text{IF } \forall (x, c) \in D : c = \text{label}(t) \text{ THEN } \text{return}(t) \text{ ENDIF} \quad // D \text{ is pure.} \)
4. \(\text{IF } Features = \emptyset \text{ THEN } \text{return}(t) \text{ ENDIF} \quad // \text{We are running out of features.} \)
5.
6.
7.

ML:VI-79 Decision Trees © STEIN/LETTMANN 2023
Decision Tree Algorithms

ID3 Algorithm (continued)

ID3(*D, Features*)

1. \(t = \text{createNode}() \)
2. \(\text{label}(t) = \text{mostCommonClass}(D) \)
3. \(\text{IF} \ \forall (x, c) \in D : c = \text{label}(t) \ \text{THEN return}(t) \ \text{ENDIF} \) // \(D \) is pure.
4. \(\text{IF} \ \text{Features} = \emptyset \ \text{THEN return}(t) \ \text{ENDIF} \) // We are running out of features.
5. \(A^* = \arg\max_{A \in \text{Features}}(\text{informationGain}(D, A)) \)
6.
7.
ID3 Algorithm (continued)

ID3(\(D, Features\))

1. \(t = \text{createNode()} \)
2. \(\text{label}(t) = \text{mostCommonClass}(D) \)
3. IF \(\forall (x, c) \in D : c = \text{label}(t) \) THEN \(\text{return}(t) \) ENDIF // \(D \) is pure.
4. IF \(\text{Features} = \emptyset \) THEN \(\text{return}(t) \) ENDIF // We are running out of features.
5. \(A^* = \text{argmax}_{A \in \text{Features}}(\text{informationGain}(D, A)) \)
6. \textbf{FOREACH} \(a \in \text{dom}(A^*) \) \textbf{DO}

 \(D_a = \{(x, c) \in D : x|_{A^*} = a\} \)

 IF \(D_a = \emptyset \) THEN

 ELSE

 \text{createEdge}(t, a, \text{ID3}(D_a, \text{Features}\setminus\{A^*\}))

 ENDIF

\textbf{ENDDO}

7. \(\text{return}(t) \)
ID3 Algorithm

$\text{ID3}(D, \text{Features})$

1. $t = \text{createNode}()$
2. $\text{label}(t) = \text{mostCommonClass}(D)$
3. IF $\forall (x, c) \in D : c = \text{label}(t)$ THEN $\text{return}(t)$ ENDIF // D is pure.
4. IF $\text{Features} = \emptyset$ THEN $\text{return}(t)$ ENDIF // We are running out of features.
5. $A^* = \text{argmax}_{A \in \text{Features}}(\text{informationGain}(D, A))$
6. FOREACH $a \in \text{dom}(A^*)$ DO

 $D_a = \{(x, c) \in D : x|_{A^*} = a\}$

 IF $D_a = \emptyset$ THEN // We are running out of data.

 $t' = \text{createNode}()$
 $\text{label}(t') = \text{label}(t)$
 $\text{createEdge}(t, a, t')$

 ELSE

 $\text{createEdge}(t, a, \text{ID3}(D_a, \text{Features}\backslash\{A^*\}))$

 ENDIF

ENDDO
7. $\text{return}(t)$
Remarks:

- Step 3 of the **ID3 algorithm** checks the purity of D and, given this case, assigns the unique class to the respective node.

- The ID3 (Iterative Dichotomiser 3) was published by [Ross Quinlan](https://www.cs.ubc.ca/~quinlan/ID3.html) in 1986.
Example set D for mushrooms, drawn from a set of feature vectors X over the three dimensions color, size, and points:

<table>
<thead>
<tr>
<th>Color</th>
<th>Size</th>
<th>Points</th>
<th>Edibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>small</td>
<td>yes</td>
<td>toxic</td>
</tr>
<tr>
<td>brown</td>
<td>small</td>
<td>no</td>
<td>edible</td>
</tr>
<tr>
<td>brown</td>
<td>large</td>
<td>yes</td>
<td>edible</td>
</tr>
<tr>
<td>green</td>
<td>small</td>
<td>no</td>
<td>edible</td>
</tr>
<tr>
<td>red</td>
<td>large</td>
<td>no</td>
<td>edible</td>
</tr>
</tbody>
</table>
Top-level call of ID3. Analyze a splitting with regard to the feature “color”:

\[D_{\text{color}} = \begin{array}{c|ccc}
 & \text{toxic} & \text{edible} \\
 \hline
 \text{red} & 1 & 1 \\
 \text{brown} & 0 & 2 \\
 \text{green} & 0 & 1 \\
\end{array} \]

\[\implies |D_{\text{red}}| = 2, \quad |D_{\text{brown}}| = 2, \quad |D_{\text{green}}| = 1 \]
Top-level call of ID3. Analyze a splitting with regard to the feature “color”:

\[D|_{\text{color}} = \begin{array}{ccc}
\text{toxic} & \text{edible} \\
\text{red} & 1 & 1 \\
\text{brown} & 0 & 2 \\
\text{green} & 0 & 1 \\
\end{array} \]

\[\sim \quad |D_{\text{red}}| = 2, \quad |D_{\text{brown}}| = 2, \quad |D_{\text{green}}| = 1 \]

Estimated prior probabilities:

\[\hat{P}(Color=\text{red}) = \frac{2}{5} = 0.4, \quad \hat{P}(Color=\text{brown}) = \frac{2}{5} = 0.4, \quad \hat{P}(Color=\text{green}) = \frac{1}{5} = 0.2 \]
Top-level call of ID3. Analyze a splitting with regard to the feature “color”:

\[
D_{\text{color}} = \begin{array}{ccc}
\text{toxic} & \text{edible} \\
\text{red} & 1 & 1 \\
\text{brown} & 0 & 2 \\
\text{green} & 0 & 1 \\
\end{array}
\quad \leadsto \quad |D_{\text{red}}| = 2, \quad |D_{\text{brown}}| = 2, \quad |D_{\text{green}}| = 1
\]

Estimated prior probabilities:

\[
\hat{P}(\text{Color}=\text{red}) = \frac{2}{5} = 0.4, \quad \hat{P}(\text{Color}=\text{brown}) = \frac{2}{5} = 0.4, \quad \hat{P}(\text{Color}=\text{green}) = \frac{1}{5} = 0.2
\]

Conditional entropy:

\[
H(A \mid B_1) = H(\{A_1, A_2\} \mid \{B_{1,1}, B_{1,2}, B_{1,3}\}) \\
= H(\{C=\text{toxic}, C=\text{edible}\} \mid \{\text{Color}=\text{red}, \text{Color}=\text{brown}, \text{Color}=\text{green}\}) \\
= - (0.4 \cdot \left(\frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{2} \cdot \log_2 \frac{1}{2} \right) + 0.4 \cdot \left(\frac{0}{2} \cdot \log_2 \frac{0}{2} + \frac{2}{2} \cdot \log_2 \frac{2}{2} \right) + 0.2 \cdot \left(\frac{0}{1} \cdot \log_2 \frac{0}{1} + \frac{1}{1} \cdot \log_2 \frac{1}{1} \right)) = 0.4
\]
Top-level call of ID3. Analyze a splitting with regard to the feature “color”:

\[
\begin{array}{c|cc}
\text{color} & \text{toxic} & \text{edible} \\
\hline
\text{red} & 1 & 1 \\
\text{brown} & 0 & 2 \\
\text{green} & 0 & 1 \\
\end{array}
\]

\[\sim |D_{\text{red}}| = 2, \quad |D_{\text{brown}}| = 2, \quad |D_{\text{green}}| = 1\]

Estimated prior probabilities:

\[\hat{P}(\text{Color}=\text{red}) = \frac{2}{5} = 0.4, \quad \hat{P}(\text{Color}=\text{brown}) = \frac{2}{5} = 0.4, \quad \hat{P}(\text{Color}=\text{green}) = \frac{1}{5} = 0.2\]

Conditional entropy:

\[H(A \mid B_1) = H(\{A_1, A_2\} \mid \{B_{1,1}, B_{1,2}, B_{1,3}\})
= H(\{C=\text{toxic}, C=\text{edible}\} \mid \{\text{Color}=\text{red}, \text{Color}=\text{brown}, \text{Color}=\text{green}\})
= -(0.4 \cdot (\frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{2} \cdot \log_2 \frac{1}{2}) + 0.4 \cdot (\frac{0}{2} \cdot \log_2 \frac{0}{2} + \frac{2}{2} \cdot \log_2 \frac{2}{2}) + 0.2 \cdot (\frac{0}{1} \cdot \log_2 \frac{0}{1} + \frac{1}{1} \cdot \log_2 \frac{1}{1})) = 0.4\]

\[H(A \mid B_2) = H(\{C=\text{toxic}, C=\text{edible}\} \mid \{\text{Size}=\text{small}, \text{Size}=\text{large}\}) = \ldots \approx 0.55\]

\[H(A \mid B_3) = H(\{C=\text{toxic}, C=\text{edible}\} \mid \{\text{Points}=\text{yes}, \text{Points}=\text{no}\}) = \ldots = 0.4\]
Remarks:

- The smaller $H(A | B)$ is, the larger becomes the information gain. Hence, the difference $H(A) - H(A | B)$ needs not to be computed since $H(A)$ is constant within each recursion step.

- In the example, the information gain in the first recursion step becomes maximum for the features “color” and “points”.

- Notation. When used in the role of a random variable (here: in the argument of a probability P), features are written in italics and capitalized.

- Notation. The probabilities, denoted as $P(·)$, are unknown and estimated by the relative frequencies, denoted as $\hat{P}(·)$.
Choosing the feature “points” in Step 5 of the ID3 algorithm.
Decision Tree Algorithms

ID3 Algorithm: Example (continued)

Decision tree before the second recursion step:

```
feature: points

<table>
<thead>
<tr>
<th>feature</th>
<th>Size</th>
<th>Edibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>small</td>
<td>toxic</td>
</tr>
<tr>
<td>no</td>
<td>large</td>
<td>edible</td>
</tr>
</tbody>
</table>

feature: color

<table>
<thead>
<tr>
<th>Color</th>
<th>Size</th>
<th>Edibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>brown</td>
<td>small</td>
<td>edible</td>
</tr>
<tr>
<td>green</td>
<td>small</td>
<td>edible</td>
</tr>
<tr>
<td>red</td>
<td>large</td>
<td>edible</td>
</tr>
</tbody>
</table>
```

Choosing the feature “color” in Step 5 of the ID3 algorithm.
Final decision tree after second recursion step:

Break of a tie: choosing the class “toxic” for D_{green} in Step 6 of the ID3 algorithm.
Features = \{ A_1, A_2, \ldots, A_p \}
Remarks (search space versus hypothesis space):

- The underlying search space of an algorithm that samples without replacement a single feature in each step (= monothetic splitting) consists of all permutations of the features in the feature set. In particular, if the number of features (= dimensionality of a feature vector x) is P, then the search space contains $P!$ elements.

- The set of possible decision trees over D forms the hypothesis space H. The maximum size of H, i.e., the maximum number of decision trees for a data set D in a binary classification setting, is $2^{|D|}$: If the feature vectors are pairwise distinct, every subset of D can form a class while the complement of the subset will form the other class. The set of possible subsets of D is $P(D)$, where $|P(D)| = 2^{|D|}$.

- Observe that either $P! < 2^{|D|}$ or $P! > 2^{|D|}$ can hold. I.e., the search space due to feature ordering can be smaller or larger than its underlying hypothesis space. The former characterizes the typical situation; also note that both the search space and the hypothesis space grow exponentially in the number of features and examples respectively.

- The difference between search space size and hypothesis space size results from Step 6 of the ID3 algorithm: the same feature selection order will lead to different decision trees when given different data sets. However, since the splitting operation in Step 6 is deterministic it has no effect on the search space.

- The runtime of the ID3 algorithm is in $O(P^2 \cdot n)$, i.e., significantly below $P!$ since only a small part of the search space is explored. At each split, the algorithm greedily (in fact, irrevocably) selects the most informative feature by applying information gain as a heuristic for feature selection.
Decision Tree Algorithms

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.

- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
Decision Tree Algorithms

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
 - The target concept is a member of the hypothesis space.

- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
 - no backtracking takes place
 - the decision tree is a result of local optimization
Decision Tree Algorithms
ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
 - The target concept is a member of the hypothesis space.

- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
 - no backtracking takes place
 - the decision tree is a result of *local optimization*

Where the inductive bias of the ID3 algorithm becomes manifest:

1. Small decision trees are preferred.
2. Highly discriminative features tend to be closer to the root.

Is this justified?
 Remarks (inductive bias):

- The inductive bias of the ID3 algorithm is of a different kind than the inductive bias of the candidate elimination algorithm (or version space algorithm):

 1. The underlying hypothesis space H of the candidate elimination algorithm is incomplete. H corresponds to a coarsened view onto the space of all hypotheses since H contains only conjunctions of feature-value pairs as hypotheses. However, this restricted hypothesis space is searched completely by the candidate elimination algorithm. Keyword: restriction bias.

 2. The underlying hypothesis space H of the ID3 algorithm is complete since it contains all decision trees that can be constructed over D. However, this complete hypothesis space is searched incompletely, but following a preference. Keyword: preference bias or search bias.

- The inductive bias of the ID3 algorithm renders the algorithm robust wrt. noise.
Decision Tree Algorithms

CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:

- X is a multiset of feature vectors. No restrictions are presumed for the features’ measurement scales.
- C is a set of classes.
- $D = \{(x_1, c_1), \ldots, (x_n, c_n)\} \subseteq X \times C$ is a multiset of examples.

Learning task:

- Fit D using a decision tree T.
Decision Tree Algorithms

CART Algorithm

[Breiman 1984] [ID3 Algorithm]

Setting:

- X is a multiset of feature vectors. No restrictions are presumed for the features’ measurement scales.
- C is a set of classes.
- $D = \{(x_1, c_1), \ldots, (x_n, c_n)\} \subseteq X \times C$ is a multiset of examples.

Learning task:

- Fit D using a decision tree T.

Characteristics of the CART algorithm:

1. Each splitting is binary and considers one feature at a time.
2. Splitting criterion is the information gain or the Gini index.
Decision Tree Algorithms
CART Algorithm (continued)

Let A be a feature with domain $\text{dom}(A)$. Apply (probably multiple times) the respective rule to induce a finite number of binary splittings of X:

1. If A is nominal, choose $B \subset \text{dom}(A)$ such that $0 < |B| \leq |\text{dom}(A) \setminus B|$.

2. If A is ordinal, choose $a \in \text{dom}(A)$ such that $x_{\min} < a < x_{\max}$, where x_{\min}, x_{\max} are the minimum and maximum values of feature A in D.

3. If A is numeric, choose $a \in \text{dom}(A)$ such that $a = 0.5 \cdot (x_{l_1} + x_{l_2})$, where x_{l_1}, x_{l_2} are consecutive elements in the ordered value list of feature A in D.
Let A be a feature with domain $\text{dom}(A)$. Apply (probably multiple times) the respective rule to induce a finite number of binary \textit{splittings} of X:

1. If A is nominal, choose $B \subseteq \text{dom}(A)$ such that $0 < |B| \leq |\text{dom}(A) \setminus B|$.

2. If A is ordinal, choose $a \in \text{dom}(A)$ such that $x_{\text{min}} < a < x_{\text{max}}$, where x_{min}, x_{max} are the minimum and maximum values of feature A in D.

3. If A is numeric, choose $a \in \text{dom}(A)$ such that $a = 0.5 \cdot (x_{l_1} + x_{l_2})$, where x_{l_1}, x_{l_2} are consecutive elements in the ordered value list of feature A in D.

Adapt \textbf{Step 5+6} to turn the ID3 into the CART algorithm:

- For all $A \in \text{Features}$ generate with the above rules all splittings of $D(t)$.
- Choose a splitting that maximizes the impurity reduction $\Delta\iota$:
 \[
 \Delta\iota(D(t), \{D(t_L), D(t_R)\}) = \iota(D(t)) - \frac{|D(t_L)|}{|D|} \cdot \iota(D(t_L)) - \frac{|D(t_R)|}{|D|} \cdot \iota(D(t_R)).
 \]
- Recursively call CART to process $D(t_L)$ and $D(t_R)$.
Remarks:

- \(t_L \) and \(t_R \) denote the left and right successor of \(t \) in the decision tree. These nodes are returned by the calls of the CART algorithm and connected to \(t \) via \texttt{createEdge()}.
- Since the CART algorithm creates binary splittings only, the feature \(A^* \) chosen in \textbf{Step 5} can be chosen again later on. Hence, a call of CART to process \(D(t_L) \) (or \(D(t_R) \)) in \textbf{Step 6} passes the complete set of features as second parameter (and not: \(Features \setminus \{A^*\} \)).
Illustration for two numeric features; i.e., the feature space X underlying X corresponds to a two-dimensional plane such as the \mathbb{R}^2:
Illustration for two numeric features; i.e., the feature space X underlying X corresponds to a two-dimensional plane such as the \mathbb{R}^2:
Decision Tree Algorithms

CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X corresponds to a two-dimensional plane such as the \mathbb{R}^2:
Decision Tree Algorithms

CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying X corresponds to a two-dimensional plane such as the \mathbb{R}^2:

\[
\begin{align*}
X & \subseteq \mathbb{R}^2 \\
D & \mathbb{R}^2
\end{align*}
\]
Decision Tree Algorithms

CART Algorithm (continued)

Illustration for two numeric features; i.e., the feature space X underlying x corresponds to a two-dimensional plane such as the \mathbb{R}^2:

By the sequence of (here: four) splittings of D the feature space X is cut into rectangular areas that are parallel to the two axes. Keyword: guillotine cuts.