III. Decision Trees

- Decision Trees Basics
- Impurity Functions
- Decision Tree Algorithms
- Decision Tree Pruning
Decision Tree Algorithms

ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:

- X is a set of feature vectors.
- C is a set of classes.
- $c : X \rightarrow C$ is the ideal classifier for X.
- $D = \{(x_1, c(x_1)), \ldots, (x_n, c(x_n))\} \subseteq X \times C$ is a set of examples.

Todo:

- Approximate $c(x)$, which is implicitly given via D, with a decision tree.
Decision Tree Algorithms

ID3 Algorithm [Quinlan 1986] [CART Algorithm]

Setting:

- X is a set of feature vectors.
- C is a set of classes.
- $c : X \rightarrow C$ is the ideal classifier for X.
- $D = \{(x_1, c(x_1)), \ldots, (x_n, c(x_n))\} \subseteq X \times C$ is a set of examples.

Todo:

- Approximate $c(x)$, which is implicitly given via D, with a decision tree.

Characteristics of the ID3 algorithm:

1. Each splitting is based on one nominal feature and considers its complete domain. Splitting based on feature A with domain $\{a_1, \ldots, a_k\}$:

 $$X = \{x \in X : x|_A = a_1\} \cup \ldots \cup \{x \in X : x|_A = a_k\}$$

2. Splitting criterion is information gain.
Decision Tree Algorithms

ID3 Algorithm [Mitchell 1997] [algorithm template]

ID3(D, Features, Target)

1. Create a node t for the tree.
2. Label t with the most common value of Target in D.
3. If all examples in D are positive, return the single-node tree t, with label “+”.
 If all examples in D are negative, return the single-node tree t, with label “–”.
4. If Features is empty, return the single-node tree t.
 - Otherwise:
 5. Let A* be the feature from Features that best classifies examples in D.
 Assign t the decision feature A*.
 6. For each possible value “a” in A* do:
 - Add a new tree branch below t, corresponding to the test A* = “a”.
 - Let D_a be the subset of D that has value “a” for A*.
 - If D_a is empty:
 Then add a leaf node with label of the most common value of Target in D.
 Else add the subtree ID3(D_a, Features \ {A*}, Target).
5. Return t.
Decision Tree Algorithms
ID3 Algorithm (pseudo code) [algorithm template]

ID3(D, $Features$, $Target$)

1. $t = createNode()$
2. $label(t) = mostCommonClass(D, Target)$
3. IF $\forall \langle x, c(x) \rangle \in D : c(x) = c$ THEN $return(t)$ ENDIF
4. IF $Features = \emptyset$ THEN $return(t)$ ENDIF
5.
6.
7.
Decision Tree Algorithms

ID3 Algorithm (pseudo code) [algorithm template]

\[\text{ID3}(D, \text{Features}, \text{Target})\]

1. \(t = \text{createNode}() \)
2. \(\text{label}(t) = \text{mostCommonClass}(D, \text{Target}) \)

3. \(\text{IF} \ \forall \langle x, c(x) \rangle \in D : c(x) = c \ \text{THEN} \ return(t) \ \text{ENDIF} \)
4. \(\text{IF} \ \text{Features} = \emptyset \ \text{THEN} \ return(t) \ \text{ENDIF} \)

5. \(A^* = \arg\max_{A \in \text{Features}} (\text{informationGain}(D, A)) \)

6. \(\)

7. \(\)
Decision Tree Algorithms

ID3 Algorithm (pseudo code) [algorithm template]

ID3(*D, Features, Target*)

1. $t = createNode()$
2. $label(t) = mostCommonClass(D, Target)$
3. **IF** $\forall \langle x, c(x) \rangle \in D : c(x) = c$ **THEN** return(t) **ENDIF**
4. **IF** $Features = \emptyset$ **THEN** return(t) **ENDIF**
5. $A^* = \arg\max_{A \in Features}(informationGain(D, A))$
6. **FOREACH** $a \in A^*$ **DO**

 $D_a = \{(x, c(x)) \in D : x|_{A^*} = a\}$
 IF $D_a = \emptyset$ **THEN**

 ELSE

 $createEdge(t, a, ID3(D_a, Features \setminus \{A^\}\), Target))$
 ENDIF

 ENDDO
7. return(t)
Decision Tree Algorithms

ID3 Algorithm (pseudo code) [algorithm template]

ID3\((D, \text{Features}, \text{Target})\)

1. \(t = createNode()\)
2. \(\text{label}(t) = \text{mostCommonClass}(D, \text{Target})\)
3. \(\text{IF } \forall \langle x, c(x) \rangle \in D : c(x) = c \text{ THEN } \text{return}(t) \text{ ENDIF}\)
4. \(\text{IF } \text{Features} = \emptyset \text{ THEN } \text{return}(t) \text{ ENDIF}\)
5. \(A^* = \arg\max_{A \in \text{Features}} (\text{informationGain}(D, A))\)
6. \(\text{FOREACH } a \in A^* \text{ DO}\)
 \(D_a = \{(x, c(x)) \in D : x|_{A^*} = a\}\)
 \(\text{IF } D_a = \emptyset \text{ THEN}\)
 \(t' = createNode()\)
 \(\text{label}(t') = \text{mostCommonClass}(D, \text{Target})\)
 \(\text{createEdge}(t, a, t')\)
 \(\text{ELSE}\)
 \(\text{createEdge}(t, a, ID3(D_a, \text{Features} \setminus \{A^*\}, \text{Target}))\)
 \(\text{ENDIF}\)
7. \(\text{return}(t)\)
Remarks:

- “Target” designates the class label according to which an example can be classified. Within Mitchell’s algorithm, the respective class labels are ‘+’ and ‘–’, modeling the binary classification situation. In the pseudo code version, Target may contain multiple (more than two) class labels.

- Step 3 of the ID3 algorithm checks the purity of D and, given this case, assigns the unique class c, $c \in \text{dom}(\text{Target})$, as label to the respective node.
Decision Tree Algorithms

ID3 Algorithm: Example

Example set D for mushrooms, implicitly defining a feature space X over the three dimensions color, size, and points:

<table>
<thead>
<tr>
<th></th>
<th>Color</th>
<th>Size</th>
<th>Points</th>
<th>Edibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>red</td>
<td>small</td>
<td>yes</td>
<td>toxic</td>
</tr>
<tr>
<td>2</td>
<td>brown</td>
<td>small</td>
<td>no</td>
<td>edible</td>
</tr>
<tr>
<td>3</td>
<td>brown</td>
<td>large</td>
<td>yes</td>
<td>edible</td>
</tr>
<tr>
<td>4</td>
<td>green</td>
<td>small</td>
<td>no</td>
<td>edible</td>
</tr>
<tr>
<td>5</td>
<td>red</td>
<td>large</td>
<td>no</td>
<td>edible</td>
</tr>
</tbody>
</table>
Top-level call of ID3. Analyze a splitting with regard to the feature “color”:

\[
D|_{\text{color}} = \begin{array}{c|cc}
\text{toxic} & \text{edible} \\
\hline
\text{red} & 1 & 1 \\
\text{brown} & 0 & 2 \\
\text{green} & 0 & 1 \\
\end{array}
\]

\[\Rightarrow |D_{\text{red}}| = 2, \; |D_{\text{brown}}| = 2, \; |D_{\text{green}}| = 1\]

Estimated a-priori probabilities:

\[p_{\text{red}} = \frac{2}{5} = 0.4, \quad p_{\text{brown}} = \frac{2}{5} = 0.4, \quad p_{\text{green}} = \frac{1}{5} = 0.2\]
Decision Tree Algorithms

ID3 Algorithm: Example (continued)

Top-level call of ID3. Analyze a splitting with regard to the feature “color”:

<table>
<thead>
<tr>
<th></th>
<th>toxic</th>
<th>edible</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>brown</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>green</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[D_{\text{color}} = \begin{array}{c|c|c}
\text{color} & \text{toxic} & \text{edible} \\
\hline
\text{red} & 1 & 1 \\
\text{brown} & 0 & 2 \\
\text{green} & 0 & 1 \\
\end{array} \]

\[\rightarrow |D_{\text{red}}| = 2, |D_{\text{brown}}| = 2, |D_{\text{green}}| = 1 \]

Estimated a-priori probabilities:

\[p_{\text{red}} = \frac{2}{5} = 0.4, \quad p_{\text{brown}} = \frac{2}{5} = 0.4, \quad p_{\text{green}} = \frac{1}{5} = 0.2 \]

Conditional entropy values for all features:

\[H(C \mid \text{color}) = -\left(0.4 \cdot \left(\frac{1}{2} \cdot \log_2 \frac{1}{2} + \frac{1}{2} \cdot \log_2 \frac{1}{2} \right) + 0.4 \cdot \left(\frac{0}{2} \cdot \log_2 \frac{0}{2} + \frac{2}{2} \cdot \log_2 \frac{2}{2} \right) + 0.2 \cdot \left(\frac{0}{1} \cdot \log_2 \frac{0}{1} + \frac{1}{1} \cdot \log_2 \frac{1}{1} \right) \right) = 0.4 \]

\[H(C \mid \text{size}) \approx 0.55 \]

\[H(C \mid \text{points}) = 0.4 \]
Remarks:

- The smaller $H(C \mid \text{feature})$ is, the larger becomes the information gain. Hence, the difference $H(C) - H(C \mid \text{feature})$ needs not to be computed since $H(C)$ is constant within each recursion step.

- In the example, the information gain in the first recursion step becomes maximum for the two features “color” and “points”.
Decision Tree Algorithms

ID3 Algorithm: Example (continued)

Decision tree before the first recursion step:

![Decision Tree Diagram]

The feature “points” was chosen in Step 5 of the ID3 algorithm.
Decision tree before the second recursion step:

The feature “color” was chosen in Step 5 of the ID3 algorithm.
Decision Tree Algorithms

ID3 Algorithm: Example (continued)

Final decision tree after second recursion step:

```
feature: Points
  yes
  feature: Color
    red
    label: toxic
  green
    label: toxic
  brown
    label: edible
  no
    label: edible
```

Break of a tie: choosing the class “toxic” for D_{green} in Step 6 of the ID3 algorithm.
Decision Tree Algorithms

ID3 Algorithm: Hypothesis Space
Decision Tree Algorithms

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.

- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
Decision Tree Algorithms

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of \(all \) hypotheses.
 - The target concept is a member of the hypothesis space.

- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
 - no backtracking takes place
 - the decision tree is a result of \(local \) optimization
Decision Tree Algorithms

ID3 Algorithm: Inductive Bias

Inductive bias is the rigidity in applying the (little bit of) knowledge learned from a training set for the classification of unseen feature vectors.

Observations:

- Decision tree search happens in the space of all hypotheses.
 - The target concept is a member of the hypothesis space.

- To generate a decision tree, the ID3 algorithm needs per branch at most as many decisions as features are given.
 - no backtracking takes place
 - the decision tree is a result of local optimization

Where the inductive bias of the ID3 algorithm becomes manifest:

1. Small decision trees are preferred.
2. Highly discriminative features tend to be closer to the root.

Is this justified?
Let A_j be the finite domain (the possible values) of feature A_j, $j = 1, \ldots, p$, and let C be a set of classes. Then, a hypothesis space H that is comprised of all decision trees corresponds to the set of all functions h, $h : A_1 \times \ldots \times A_p \rightarrow C$. Typically, $C = \{0, 1\}$.

The inductive bias of the ID3 algorithm is of a different kind than the inductive bias of the candidate elimination algorithm (version space algorithm):

1. The underlying hypothesis space H of the candidate elimination algorithm is incomplete. H corresponds to a coarsened view onto the space of all hypotheses since H contains only conjunctions of feature-value pairs as hypotheses. However, this restricted hypothesis space is searched completely by the candidate elimination algorithm. Keyword: restriction bias

2. The underlying hypothesis space H of the ID3 algorithm is complete. H corresponds to the set of all discrete functions (from the Cartesian product of the feature domains onto the set of classes) that can be represented in the form of a decision tree. However, this complete hypothesis space is searched incompletely (following a preference). Keyword: preference bias or search bias

The inductive bias of the ID3 algorithm renders the algorithm robust regarding noise.
Decision Tree Algorithms

CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:

- X is a set of feature vectors. No restrictions are presumed for the features’ measurement scales.
- C is a set of classes.
- $c : X \rightarrow C$ is the ideal classifier for X.
- $D = \{(x_1, c(x_1)), \ldots, (x_n, c(x_n))\} \subseteq X \times C$ is a set of examples.

Todo:

- Approximate $c(x)$, which is implicitly given via D, with a decision tree.
Decision Tree Algorithms

CART Algorithm [Breiman 1984] [ID3 Algorithm]

Setting:

- X is a set of feature vectors. No restrictions are presumed for the features’ measurement scales.
- C is a set of classes.
- $c : X \rightarrow C$ is the ideal classifier for X.
- $D = \{(x_1, c(x_1)), \ldots, (x_n, c(x_n))\} \subseteq X \times C$ is a set of examples.

Todo:

- Approximate $c(x)$, which is implicitly given via D, with a decision tree.

Characteristics of the CART algorithm:

1. Each splitting is binary and considers one feature at a time.
2. Splitting criterion is the information gain or the Gini index.
1. Let A be a feature with domain \mathcal{A}. Ensure a finite number of binary splittings for X by applying the following domain splitting rules:

- If A is nominal, choose $A' \subseteq A$ such that $0 < |A'| \leq |\mathcal{A} \setminus A'|$.

- If A is ordinal, choose $a \in A$ such that $x_{\text{min}} < a < x_{\text{max}}$, where x_{min}, x_{max} are the minimum and maximum values of feature A in D.

- If A is numeric, choose $a \in A$ such that $a = (x_k + x_l)/2$, where x_k, x_l are consecutive elements in the ordered value list of feature A in D.
1. Let A be a feature with domain A. Ensure a finite number of **binary splittings** for X by applying the following domain splitting rules:

 - If A is nominal, choose $A' \subset A$ such that $0 < |A'| \leq |A \setminus A'|$.
 - If A is ordinal, choose $a \in A$ such that $x_{\text{min}} < a < x_{\text{max}}$, where $x_{\text{min}}, x_{\text{max}}$ are the minimum and maximum values of feature A in D.
 - If A is numeric, choose $a \in A$ such that $a = (x_k + x_l)/2$, where x_k, x_l are consecutive elements in the ordered value list of feature A in D.

2. For node t of a decision tree generate all splittings of the above type.

3. Choose a splitting from the set of splittings that maximizes the impurity reduction $\Delta \iota$:

 $$\Delta \iota(D(t), \{D(t_L), D(t_R)\}) = \iota(t) - \frac{|D_L|}{|D|} \cdot \iota(t_L) - \frac{|D_R|}{|D|} \cdot \iota(t_R),$$

 where t_L and t_R denote the left and right successor of t.

Decision Tree Algorithms
CART Algorithm (continued)
Decision Tree Algorithms
CART Algorithm (continued)

Illustration for two numeric features, i.e., the feature space \(X \) corresponds to a two-dimensional plane:

By a sequence of splittings the feature space \(X \) is split into rectangles that are parallel to the two axes.