Chapter G:I

I. Scientific Toolbox

- Literature Research
- Oral Presentations
- Scientific Writing
Literature Research
What it is and why to do it

- Fundamental task in science
- Time-intensive but necessary
- Hardly anybody is the first on a problem
 … if someone is, what does that tell you?
- Don’t reinvent the wheel

- Find out if an approach to a problem is new
- Find alternative approaches or perspectives
- Widen the scope of the problem
- Obtain background information
- Obtain evidence for your or others’ claims
 … and similar reasons
Literature Research

Types of scientific literature (and similar)

- Textbooks, monographs
 - Theory, basics, approved techniques
- Scientific journal papers
 - Completed research lines
- Conference full papers
 - State-of-the-art research
 - Major publication type in computer science
- Conference short papers / Workshop papers
 - New ideas, ongoing research
- Technical reports
 - New ideas, ongoing research, smaller contributions
- Conference / Online tutorials
 - Easy access to basics and techniques
- Popular science magazines
 - Easy access to research lines
- Other websites
 - Anything
Literature Research
What type to prefer (in our field)

- Literature should be peer-reviewed
 - Most books, journal, conference, and workshop papers are, but not all

- Rule of thumb
 books ≻ journals ≻ conferences ≻ workshops ≻ tech reports ≻ magazines ≻ websites ≻ other

- ... with exceptions like top conferences ≻ average journals
Literature Research

Assessing the “quality” of literature

- Conference and journal rankings
 - Top tier ranked A+ / A* or A; B still good
 - Unranked conferences / journals may be doubtful ... or very new
 No ranking achieves complete coverage, though.
 - One very reputable ranking is CORE
 [core.edu.au/conference-portal]

- Number of citations
 - Roughly indicates importance
 - Rather for relative comparisons within a topic
 - Remark: Newer papers naturally tend to have fewer citations
 - One resource for citation numbers is Google Scholar [scholar.google.com]
 Journals also have so-called impact factors derived from citation numbers.

- Disclaimer
 - Good and bad research appears at all places
 - Often, only reading helps ... life is hard ;-)
Literature Research
Reading and finding literature

- Reading papers efficiently
 - Read abstract, introduction, and conclusion
 - Look at figures and tables
 - Decide whether worth reading everything
 - Read goal-driven
 Specify questions to be answered during reading.

- Finding the next paper
 - Follow promising references at the end of a paper
 - Find promising papers citing a paper
 - Learn to identify the best search terms
 Rule of thumb: As specific as possible, but as abstract as needed.

- Getting started in a seminar
 - Read the material we provide
 - Then find further literature
Literature Research
Acquiring literature

- Obtaining papers
 - Many papers are simply freely available online
 - Others might be free from within a university network
 - Others might be send by authors on request
 - If neither, maybe your advisors can help

- Important sources
 - dblp for any literature related to computer science [dblp.dagstuhl.de]
 - Google Scholar or Semantic Scholar for any scientific literature [scholar.google.com] [semanticscholar.org]
 ... and general web search, of course

- Accessing books
 - Check if available in the library
 - Some accessible online, for example, on Google Books [books.google.com]

Purchasing books can make sense when of continuous importance for you.
Literature Research

Organizing literature

- Literature organization
 - Maintain notes and overview
 - “Extra” effort will pay off

- Create logical folder structure
 - Build your own view of the field
 - Logically subdivide topics, but don’t over-engineer
 For instance ./material/query-understanding/query-segmentation/ – but probably not deeper.

- Rename all PDFs consistently
 - Simplifies browsing and grep-ing
 - We use <author><year>-<full-title-lower-case-no-special-chars>.pdf
 As in risvik03-query-segmentation-for-web-search.pdf

- Organizing meta-information
 - Create bibtex entries directly when organizing literature
 Very good source for computer science is dblp [dblp.dagstuhl.de]
 - [Here] is an example of collecting and organizing bibtex entries
Chapter G:I

I. Scientific Toolbox

- Literature Research
- Oral Presentations
- Scientific Writing
Oral Presentations
Content of a talk

- Scientific presentation is storytelling
 - Tell a coherent story with a central theme
 - Plan what points to make and how to get there
 - Make it exciting, show importance
 - Don’t be complete, be selective
 Holds for talks; different in writing
 - Avoid surprise: Clarify why you tell something

- Science needs to be understood
 - Adjust complexity to audience
 - Leave out formal things, unless really needed
 Holds for talks; probably different in writing
 - Be precise and clear
 - Introduce terms, use them consistently
 - Figures and examples help

“Sometimes reality is too complex. Stories give it a form.”
Jean-Luc Godard

“Everything should be as simple as possible, but not simpler.”
Oral Presentations

Figures

- Charts, diagrams, graphs, pictures, drawings, ...
- Slides are visual
 Rule of thumb: No slide without a figure

- What to use figures for
 - Primary. Replace text, visually explain concepts
 - Secondary. Support your message with pictures
 (as often done in this presentation)

- Formatting
 - Vector graphics whenever possible
 - Others: Optimize sharpness, scale down smartly
 Don’t scale > 100%; 50% is better than 53% – why?
 - Instead of squeezing or stretching the aspect ratio
 try to cut figures on any side
 - Think of color-blind people – contrast helps
 - Check readability of included text

“A picture is worth a 1000 words.”

“Unsharpness is the mistake that even lay persons see.”

Herbert Kania
Oral Presentations

Presentation and slide structure

- Overall structure of a presentation
 - Title slide. Title, authors, maybe date
 - Outline slide. Only for longer talks of \(\gg 30 \) minutes
 - Content slides. Your story
 - Conclusion slide. Take aways, future work
 But no separate “Thank you”-slide!
 - Maybe references. But only shown when asked for

- Structure of content slides
 - Header. Clear unique title
 Remark: Titles often not read by the audience.
 - Body. Bullet points, figures, tables, etc.
 - Footer. Title, presenter, page number, maybe “progress”

- Space for separation
 - Leave space between different slide parts
 - Leave some space to slide borders
 Sometimes clipped + it is getting harder and harder to read down here ... isn’t it? ;)

G:I-12 Scientific Toolbox © WACHSMUTH 2020
Oral Presentations

Style of slides

- General slide style
 - Decide what to put on a slide and what to say
 - Vary slides to maintain attention
 Larger figures here, some more text there . . .
 - Animations only when useful; use consistently
 Avoid playful ones, unless they really match your message.
 - Clarify what is from you and what from others
 Cite others’ work as you do in writing (comes later).

- Text style
 - Avoid grammar and spelling errors
 - No full sentences, rather key phrases
 - AUA
 Avoid unnecessary acronyms

- Amount of text
 - Some say 7x7 maximum 7 bullet points per slide, 7 words per point
 - Others say 3x3 3 top-level points with 3 sub-points
Oral Presentations

Fonts

- Sans-serif fonts (Helvetica, Arial, ...) much more readable on slides
- Serif fonts (Times, Garamond, ...) maybe for example texts

- Font size – Do not mix too many on one slide
 - This text is 26pt – Maybe for titles
 - This text is 24pt
 - This text is 21pt
 - This text is 18pt – About minimum for text that should be read
 - This text is 15pt
 - This text is 12pt – Minimum for extra information that may be skipped
 - This text is 10pt
 - This text is 8pt
 - This text is 6pt – maybe for text that should not be readable ;-

- Font shapes and colors
 - Use italics, boldface, monospace, and colors consistently
 - And do not mix too many on a slide
Oral Presentations

Talking and timing

- Giving a talk
 - Match words on slides, but complement them
 - No pre-phrased sentences
 - Look at the audience, speak to everybody
 - Don’t be too formal, but be serious, avoid slang
 Jokes may be nice if you know how to use them.

- Timing
 - Use your time, but stick with given time limit
 - Expect 1.5–2 minutes per (animated) content slide
 - Rule of thumb: Audience can read slide twice
 - Leave time for questions and discussion at the end

- Practice your complete talk . . . and practice again
 - How much time do you need?
 - Do your story and slide transitions work?
 - Look for honest feedback
Chapter G:I

I. Scientific Toolbox
 - Literature Research
 - Oral Presentations
 - Scientific Writing
Scientific Writing
Content of a Paper

- Most of the above hints on talks still hold
 - Science is storytelling
 Seminar: No scientific break-through expected, rather summarize and discuss.
 - Science needs to be understood

- Papers are more complete
 - Tell the whole story, avoid gaps in argumentation
 - But: Include only relevant content
 Don’t expect too much prior knowledge.
 - But: No details on knowledge that can be presupposed

- Papers should be sound
 - Need to be precise more than in talks
 - Use logical arguments, from broad context to deep details
 - Formalize concepts if needed / helpful
Scientific Writing
Structure of a Paper

- **High-level structure**
 - Title, author information, abstract
 - Introduction
 - Usually 2–5 sections
 - Related work, approach, experiments, etc.
 - Conclusion
 - References
 - ... and sometimes appendices

- **Section structure**
 - Often numbered subsections (2.1, 2.2, ...)
 - If any, subsubsections unnumbered
 - Always have text introducing (sub)sections

- **Section headings**
 - Stick to the standard: “Introduction” is first, “Conclusion” is last, etc.
 - Short misleading headings worse than longer clear ones
Scientific Writing

Abstract

- A concise high-level summary of the paper
- Usually 5–10 sentences

- One “approach”
 - Motivation and context (1 sentence)
 - Problem and why not solved (1–2 sentences)
 - Question addressed in the paper (1 sentence)
 - Approach with some details (2–3 sentences)
 - Evaluation, results, conclusion (1–3 sentences)

- Or in other words
 - What is the problem? Why is it a problem?
 - What is the solution? Why is it a solution to the problem?

Abstract

Several approaches have been proposed to model either the explicit sequential structure of an argumentative text or its implicit hierarchical structure. So far, the adequacy of these models of overall argumentation remains unclear. This paper asks what type of structure is actually important to tackle downstream tasks in computational argumentation. We analyze patterns in the overall argumentation of texts from three corpora. Then, we adapt the idea of positional tree kernels in order to capture sequential and hierarchical argumentative structure together for the first time. In systematic experiments for three text classification tasks, we find strong evidence for the impact of both types of structure. Our results suggest that either of them is necessary while their combination may be beneficial.
Scientific Writing

Sections

- Introduction
 - The abstract in more detail
 - Tell the whole story, from context to conclusion
 - Still high-level
 - Understandable for computer scientists

- Content sections
 - The introduction in more detail
 - Elaborate on related work, concepts, models, data, approaches, experiments, and results
 - More technical, for researchers from the area

- Conclusion
 - The introduction in less detail
 - Summarize story in retrospective, give outlook
 - Semi-technical
Scientific Writing

Style

- Write clearly, unambiguously, and concise
- Don’t make things complex
 (common misunderstanding)

- Some guidelines:
 - Use impersonal or “we” form
 - Avoid pronouns with unclear references
 - Use explicit discourse markers, such as “because”
 - Blurring is non-scientific, such as “It could be . . .”
 - English sentences are short, one statement per sentence
 - Again: Avoid grammar and spelling errors

- Recommended reports from experienced researchers:
 - Justin Zobel: Writing for Computer Science
 - David Maxwell: Writing up a PhD thesis
 - George D. Gopen and Judith A. Swan: The Science of Scientific Writing
Hints from wordvice.com:

- avoid nominalizations
- eliminate prepositions
- avoid fillers
Scientific Writing
Tables, Figures, Terms, and Footnotes

- Tables and figures
 - In papers, just number increasingly
 Figure 1, 2, ... Table 1, 2, ...
 (NOT: Figure 2.1, 2.2, ...)
 - Tables: Horizontal lines suffice
 - No included font larger than article font
 - Explain in text and in caption

- Technical terms
 - Introduce where needed, don’t overformalize
 - Use well-defined terms, AIA & AUA
 - Always introduce acronyms & avoid unnecessary acronyms.
 - Don’t use synonyms for terms
 Reader is misled to check whether intentional differences exist.

- Footnotes
 - Only for secondary information
 - Reduced readability, should be an exception
 - Don’t cite literature using footnotes
Scientific Writing

Citations

- Citation
 - In-text reference to a bibliographic source
 - Different styles
 Acronyms [ACW17], ACL style (Ajjour et al., 2017), numbers [42], . . .

- What to cite
 - Any reuse, paraphrase, summary, or translation of content
 - Rule of thumb: Always clarify what is from you and what from others
 Also have to cite yourself if you use your own sources.
 - Better one citation too much than too few

- How to cite
 - Direct reuse. Put in quotes (shorten with [. . .]), give source
 Unit segmentation is “[. . .] the splitting of a text into argumentative segments” [ACW17].
 - Other citations. Give source close-by
 As Ajjour et al. point out, segmentation is the first task of an argument mining pipeline [ACW17].
 - Large text portions. Give source once in the beginning
 In the following paragraph, we summarize the segmentation approach of Ajjour et al. [ACW17].
Scientific Writing

References

- Bibliographical information at the end of the paper
- Exactly those references cited in the text
- Information should be complete and homogenous

- Needed meta-information
 - All literature. Author, year, title
 - Conferences/Workshops. Proceedings, pages
 - Journals. Journal name, issue, number, pages
 - Books. Edition if any, publisher
 - Only online. Give URL with access date

- Bibtex
 - LaTeX handles references automatically using bibtex

See part on organizing literature above.
Scientific Writing

Plagiarism

- To sell another’s ideas or expressions as one’s own
 See en.wikipedia.org/wiki/Plagiarism
- On purpose or due to lack of giving sources
- Plagiarism is not(!) a trivial offense
 In some countries considered as crime.
- Proper citing avoids all plagiarism issues

- Consequences
 - Major cases lead to the denial of being published, graded, or worse
 - Minor cases can still negatively affect a grade or review outcomes

- Webis Group [www.webis.de]
 - We do research on text reuse detection
 - See publications, shared tasks, or the tool picapica [www.picapica.org]