
Chapter IR:IV

IV. Indexes
q Inverted Indexes
q Query Processing
q Index Construction
q Index Compression

IR:IV-1 Indexes © HAGEN/POTTHAST/STEIN 2018

Inverted Indexes
Index [ANSI/NISO 1997]

An index is a systematic guide designed to indicate topics or features of documents
in order to facilitate retrieval of documents or parts of documents.

The function of an index is to provide users with an effective and systematic means
for locating documentary units (complete documents or parts of documents) that
are relevant to information needs or requests.

IR:IV-2 Indexes © HAGEN/POTTHAST/STEIN 2018

https://web.archive.org/web/20130622032358/http://www.niso.org/publications/tr/tr02.pdf

Inverted Indexes
Index [ANSI/NISO 1997]

Requirements:

1. identify documentary units that treat particular topics or possess particular
features.

2. indicate all important topics or features of documentary units in accordance
with the level of exhaustivity appropriate for the index.

3. discriminate between major and minor treatments of particular topics or
manifestations of particular features.

4. provide access to topics or features using the terminology of prospective
users.

5. provide access to topics or features using the terminology of verbal texts
being indexed whenever possible.

IR:IV-3 Indexes © HAGEN/POTTHAST/STEIN 2018

https://web.archive.org/web/20130622032358/http://www.niso.org/publications/tr/tr02.pdf

Inverted Indexes
Index [ANSI/NISO 1997]

Requirements: (continued)

6. use terminology that is as specific as documentary units warrant and the
indexing language permits.

7. provide access through synonymous and equivalent terms.

8. guide users to terms representing related concepts (narrower terms, other
related terms, and if possible, broader terms).

9. provide for the combination of terms to facilitate the identification of particular
types or aspects of topics or features and to eliminate unwanted types or
aspects.

10. provide a means for searching for particular topics or features by means of a
systematic arrangement of entries in displayed indexes or, for non-displayed
indexes, by means of a clearly documented and displayed method for
entering, combining, and modifying terms to create search statements and for
reviewing retrieved items.

IR:IV-4 Indexes © HAGEN/POTTHAST/STEIN 2018

https://web.archive.org/web/20130622032358/http://www.niso.org/publications/tr/tr02.pdf

Remarks:

q Several standards worldwide govern the (manual) construction and formatting of indexes.
[Gibbs 2015]

q ANSI = American National Standards Institute

q NISO = National Information Standards Organization

IR:IV-5 Indexes © HAGEN/POTTHAST/STEIN 2018

http://www.niso.org/sites/default/files/stories/2017-08/Standards for Indexing.pdf

Inverted Indexes
Data Structure

Term-document matrix:

d1 d2 d3 d4 d5 . . .

t1 w11 w12 w13 w14 w15

t2 w21 w22 w23 w24 w25

t3 w31 w32 w33 w34 w35

t4 w41 w42 w43 w44 w45

t5 w51 w52 w53 w54 w55
...

Observations:

q Most information retrieval models induce a term-document matrix by
computing term weights wij for each pair of term ti ∈ T and document dj ∈ D.

q Query-independent computations that only depend on D are done offline.

q Online, given a query q, the term weights required are looked up to score
documents.

IR:IV-6 Indexes © HAGEN/POTTHAST/STEIN 2018

Inverted Indexes
Data Structure

Term-document matrix:

d1 d2 d3 d4 d5 . . .

t1 w11 w12 w13 w14 w15

t2 w21 w22 w23 w24 w25

t3 w31 w32 w33 w34 w35

t4 w41 w42 w43 w44 w45

t5 w51 w52 w53 w54 w55
...

Observations:

q The size of the term-document matrix is |T | · |D|.

q The term-document matrix is sparse: the vast majority of term weights are 0.

q Therefore, most of the storage space required for the full matrix is wasted.

q Using a sparse-matrix representation yields significant space savings.

IR:IV-7 Indexes © HAGEN/POTTHAST/STEIN 2018

Inverted Indexes
Data Structure

Term-document matrix as inverted index data structure:

T Postings

t1 d1, w11 d2, w12 d3, w13 d4, w14 d5, w15

t2 d1, w21 d4, w24 d5, w25

t3 d2, w32 d3, w33

t4 d3, w43 d4, w44

t5 d2, w52
...

Components:

q Term vocabulary file
Lookup table which maps terms T to the start of their postings list in the postings file.

q Postings file
File(s) that store postings lists on disk.

q Index entries . . . , so-called postings

IR:IV-8 Indexes © HAGEN/POTTHAST/STEIN 2018

Inverted Indexes
Data Structure

Term-document matrix as inverted index data structure:

T Postings

t1 d1, w11 d2, w12 d3, w13 d4, w14 d5, w15

t2 d1, w21 d4, w24 d5, w25

t3 d2, w32 d3, w33

t4 d3, w43 d4, w44

t5 d2, w52
...

Design choices:

q Information stored in a posting . . .

q Ordering of each term’s postings list

q Encoding and compression techniques for further space savings

q Physical implementation details, such as external memory and distribution

IR:IV-9 Indexes © HAGEN/POTTHAST/STEIN 2018

Remarks:

q The name “inverted index” is redundant: an index always maps terms to (parts of) documents
where they occur. Better suited, but used less often, is “inverted file”, which conveys that a
(document) file is inverted to form an index.

q Some retrieval models do not assign zero weights, but default to non-zero weights instead.
Such weights can be omitted from an inverted index as well; they can be stored as a constant
and used whenever a term weight for a given term-document pair is required that is not
present in the inverted index.

IR:IV-10 Indexes © HAGEN/POTTHAST/STEIN 2018

Inverted Index
Postings

Given term t and document d, their posting may include the following:

<document> [<weights>] [<position>] [...]

<document>:

q Reference to the document d in which a given term t occurs.

<weights>:

q Term weight w for term t in document d.

q Term weights can be stored, say, tf (t, d) or term weights of the retrieval model.
Saves query processing time, but predetermines a retrieval model.

<position>:

q Term positions within the document, i.e., term, sentence, page, chapter, etc.

q Field information, e.g., title, author, introduction, etc.
IR:IV-11 Indexes © HAGEN/POTTHAST/STEIN 2018

Inverted Index
Postings

Two special-purpose entries are distinguished:

... <list length> ... <skip pointer>

<list length>:

q First entry of the postings list of a term t.

q Stores the length of the postings list, excluding special-purpose entries.

q What does the length of a postings list indicate?

<skip pointer>:

q Used to implement a skip list in a term’s postings list.

q Allows for random access to postings in O(logn).

q Second entry of a postings list, and then at random (or regular) intervals.
An effective amount of skip entries has been found to be

√
df (t,D).

IR:IV-12 Indexes © HAGEN/POTTHAST/STEIN 2018

https://en.wikipedia.org/wiki/Skip_list

Inverted Index
Postings

Two special-purpose entries are distinguished:

... <list length> ... <skip pointer>

<list length>:

q First entry of the postings list of a term t.

q Stores the length of the postings list, excluding special-purpose entries.

q Corresponds to the document frequency df (t,D) of term t in collection D.

<skip pointer>:

q Used to implement a skip list in a term’s postings list.

q Allows for random access to postings in O(logn).

q Second entry of a postings list, and then at random (or regular) intervals.
An effective amount of skip entries has been found to be

√
df (t,D).

IR:IV-13 Indexes © HAGEN/POTTHAST/STEIN 2018

https://en.wikipedia.org/wiki/Skip_list

Inverted Index
Postings Lists

Example for two postings lists, where for term ti postings k, tf (ti, dk) are stored:

T Postings
...
ti 2, 4 4, 9 8, 2 16, 1 19, 7 23, 5 28, 6 41, 8 50, 6 77, 8 . . .

tj 1, 1 2, 3 3, 5 5, 2 8, 17 41, 6 51, 5 60, 5 71, 3 77, 2 . . .
...

Ordering:

q by document identifier. Problem: good documents may end up last.

q by term weight. Early termination, but renders skip lists useless.

q by document quality. Early termination, but renders skip lists useless.

Compression:

q The size of an index is in O(|D|), where |D| denotes the disk size of D.

q Postings lists can be effectively compressed with tailored techniques.
IR:IV-14 Indexes © HAGEN/POTTHAST/STEIN 2018

Remarks:

q There is a tradeoff between the amount of information stored in a posting, and the time it
takes to process a postings list in search of a document. The more information is stored in a
posting, the more must be decoded or at least loaded into memory during postlist traversal.

q A skip entry may include more than one pointer, allowing for skip steps of various lengths.

q Dependent on the search scenario, constructing more than one index with different properties
may be beneficial.

IR:IV-15 Indexes © HAGEN/POTTHAST/STEIN 2018

