GenericConstantSchedulerWithQuadraticWarmup
- class lightning_ir.schedulers.schedulers.GenericConstantSchedulerWithQuadraticWarmup(keys: Sequence[str], *args, **kwargs)[source]
Bases:
GenericScheduler
,ConstantSchedulerWithQuadraticWarmup
Methods
__init__
(keys, *args, **kwargs)check_delay
(current_step)check_warmup
(current_step)get_value
(sub_keys, obj)load_state_dict
(state_dict)Called when loading a checkpoint, implement to reload callback state given callback's
state_dict
.on_after_backward
(trainer, pl_module)Called after
loss.backward()
and before optimizers are stepped.on_before_backward
(trainer, pl_module, loss)Called before
loss.backward()
.on_before_optimizer_step
(trainer, pl_module, ...)Called before
optimizer.step()
.on_before_zero_grad
(trainer, pl_module, ...)Called before
optimizer.zero_grad()
.on_exception
(trainer, pl_module, exception)Called when any trainer execution is interrupted by an exception.
on_fit_end
(trainer, pl_module)Called when fit ends.
on_fit_start
(trainer, pl_module)Called when fit begins.
on_load_checkpoint
(trainer, pl_module, ...)Called when loading a model checkpoint, use to reload state.
on_predict_batch_end
(trainer, pl_module, ...)Called when the predict batch ends.
on_predict_batch_start
(trainer, pl_module, ...)Called when the predict batch begins.
on_predict_end
(trainer, pl_module)Called when predict ends.
on_predict_epoch_end
(trainer, pl_module)Called when the predict epoch ends.
on_predict_epoch_start
(trainer, pl_module)Called when the predict epoch begins.
on_predict_start
(trainer, pl_module)Called when the predict begins.
on_sanity_check_end
(trainer, pl_module)Called when the validation sanity check ends.
on_sanity_check_start
(trainer, pl_module)Called when the validation sanity check starts.
on_save_checkpoint
(trainer, pl_module, ...)Called when saving a checkpoint to give you a chance to store anything else you might want to save.
on_test_batch_end
(trainer, pl_module, ...[, ...])Called when the test batch ends.
on_test_batch_start
(trainer, pl_module, ...)Called when the test batch begins.
on_test_end
(trainer, pl_module)Called when the test ends.
on_test_epoch_end
(trainer, pl_module)Called when the test epoch ends.
on_test_epoch_start
(trainer, pl_module)Called when the test epoch begins.
on_test_start
(trainer, pl_module)Called when the test begins.
on_train_batch_end
(trainer, pl_module, ...)Called when the train batch ends.
on_train_batch_start
(trainer, pl_module, ...)on_train_end
(trainer, pl_module)on_train_epoch_end
(trainer, pl_module)Called when the train epoch ends.
on_train_epoch_start
(trainer, pl_module)Called when the train epoch begins.
on_train_start
(trainer, pl_module)on_validation_batch_end
(trainer, pl_module, ...)Called when the validation batch ends.
on_validation_batch_start
(trainer, ...[, ...])Called when the validation batch begins.
on_validation_end
(trainer, pl_module)Called when the validation loop ends.
on_validation_epoch_end
(trainer, pl_module)Called when the val epoch ends.
on_validation_epoch_start
(trainer, pl_module)Called when the val epoch begins.
on_validation_start
(trainer, pl_module)Called when the validation loop begins.
set_value
(sub_keys, obj, value)setup
(trainer, pl_module, stage)Called when fit, validate, test, predict, or tune begins.
Called when saving a checkpoint, implement to generate callback's
state_dict
.step
(key, current_step)teardown
(trainer, pl_module, stage)Called when fit, validate, test, predict, or tune ends.
value_lambda
(current_step)Attributes
Identifier for the state of the callback.
- load_state_dict(state_dict: dict[str, Any]) None
Called when loading a checkpoint, implement to reload callback state given callback’s
state_dict
.- Parameters:
state_dict – the callback state returned by
state_dict
.
- on_after_backward(trainer: Trainer, pl_module: LightningModule) None
Called after
loss.backward()
and before optimizers are stepped.
- on_before_backward(trainer: Trainer, pl_module: LightningModule, loss: Tensor) None
Called before
loss.backward()
.
- on_before_optimizer_step(trainer: Trainer, pl_module: LightningModule, optimizer: Optimizer) None
Called before
optimizer.step()
.
- on_before_zero_grad(trainer: Trainer, pl_module: LightningModule, optimizer: Optimizer) None
Called before
optimizer.zero_grad()
.
- on_exception(trainer: Trainer, pl_module: LightningModule, exception: BaseException) None
Called when any trainer execution is interrupted by an exception.
- on_load_checkpoint(trainer: Trainer, pl_module: LightningModule, checkpoint: dict[str, Any]) None
Called when loading a model checkpoint, use to reload state.
- Parameters:
trainer – the current
Trainer
instance.pl_module – the current
LightningModule
instance.checkpoint – the full checkpoint dictionary that got loaded by the Trainer.
- on_predict_batch_end(trainer: Trainer, pl_module: LightningModule, outputs: Any, batch: Any, batch_idx: int, dataloader_idx: int = 0) None
Called when the predict batch ends.
- on_predict_batch_start(trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int, dataloader_idx: int = 0) None
Called when the predict batch begins.
- on_predict_epoch_end(trainer: Trainer, pl_module: LightningModule) None
Called when the predict epoch ends.
- on_predict_epoch_start(trainer: Trainer, pl_module: LightningModule) None
Called when the predict epoch begins.
- on_sanity_check_end(trainer: Trainer, pl_module: LightningModule) None
Called when the validation sanity check ends.
- on_sanity_check_start(trainer: Trainer, pl_module: LightningModule) None
Called when the validation sanity check starts.
- on_save_checkpoint(trainer: Trainer, pl_module: LightningModule, checkpoint: dict[str, Any]) None
Called when saving a checkpoint to give you a chance to store anything else you might want to save.
- Parameters:
trainer – the current
Trainer
instance.pl_module – the current
LightningModule
instance.checkpoint – the checkpoint dictionary that will be saved.
- on_test_batch_end(trainer: Trainer, pl_module: LightningModule, outputs: Tensor | Mapping[str, Any] | None, batch: Any, batch_idx: int, dataloader_idx: int = 0) None
Called when the test batch ends.
- on_test_batch_start(trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int, dataloader_idx: int = 0) None
Called when the test batch begins.
- on_test_epoch_end(trainer: Trainer, pl_module: LightningModule) None
Called when the test epoch ends.
- on_test_epoch_start(trainer: Trainer, pl_module: LightningModule) None
Called when the test epoch begins.
- on_train_batch_end(trainer: Trainer, pl_module: LightningModule, outputs: Tensor | Mapping[str, Any] | None, batch: Any, batch_idx: int) None
Called when the train batch ends.
Note
The value
outputs["loss"]
here will be the normalized value w.r.taccumulate_grad_batches
of the loss returned fromtraining_step
.
- on_train_epoch_end(trainer: Trainer, pl_module: LightningModule) None
Called when the train epoch ends.
To access all batch outputs at the end of the epoch, you can cache step outputs as an attribute of the
lightning.pytorch.core.LightningModule
and access them in this hook:class MyLightningModule(L.LightningModule): def __init__(self): super().__init__() self.training_step_outputs = [] def training_step(self): loss = ... self.training_step_outputs.append(loss) return loss class MyCallback(L.Callback): def on_train_epoch_end(self, trainer, pl_module): # do something with all training_step outputs, for example: epoch_mean = torch.stack(pl_module.training_step_outputs).mean() pl_module.log("training_epoch_mean", epoch_mean) # free up the memory pl_module.training_step_outputs.clear()
- on_train_epoch_start(trainer: Trainer, pl_module: LightningModule) None
Called when the train epoch begins.
- on_validation_batch_end(trainer: Trainer, pl_module: LightningModule, outputs: Tensor | Mapping[str, Any] | None, batch: Any, batch_idx: int, dataloader_idx: int = 0) None
Called when the validation batch ends.
- on_validation_batch_start(trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int, dataloader_idx: int = 0) None
Called when the validation batch begins.
- on_validation_end(trainer: Trainer, pl_module: LightningModule) None
Called when the validation loop ends.
- on_validation_epoch_end(trainer: Trainer, pl_module: LightningModule) None
Called when the val epoch ends.
- on_validation_epoch_start(trainer: Trainer, pl_module: LightningModule) None
Called when the val epoch begins.
- on_validation_start(trainer: Trainer, pl_module: LightningModule) None
Called when the validation loop begins.
- setup(trainer: Trainer, pl_module: LightningModule, stage: str) None
Called when fit, validate, test, predict, or tune begins.
- state_dict() dict[str, Any]
Called when saving a checkpoint, implement to generate callback’s
state_dict
.- Returns:
A dictionary containing callback state.
- property state_key: str
Identifier for the state of the callback.
Used to store and retrieve a callback’s state from the checkpoint dictionary by
checkpoint["callbacks"][state_key]
. Implementations of a callback need to provide a unique state key if 1) the callback has state and 2) it is desired to maintain the state of multiple instances of that callback.