TrainBatch
- class lightning_ir.data.data.TrainBatch(queries: Sequence[str], docs: Sequence[Sequence[str]], query_ids: Sequence[str] | None = None, doc_ids: Sequence[Sequence[str]] | None = None, qrels: List[Dict[str, int]] | None = None, targets: Tensor | None = None)[source]
Bases:
RankBatch
A batch of ranking data that combines multiple
RankSample
instances- Parameters:
queries (Sequence[str]) – List of query texts
docs (Sequence[Sequence[str]]) – List of list of document texts
query_ids (Sequence[str], optional) – Optional list of query ids
doc_ids (Sequence[Sequence[str]], optional) – Optional list of list of document ids
qrels (List[Dict[str, Any]], optional) – Optional list of dictionaries mapping document ids to relevance labels
targets (torch.Tensor, optional) – Optional list of target labels denoting the relevane of a document for the query
- __init__(queries: Sequence[str], docs: Sequence[Sequence[str]], query_ids: Sequence[str] | None = None, doc_ids: Sequence[Sequence[str]] | None = None, qrels: List[Dict[str, int]] | None = None, targets: Tensor | None = None) None
Methods
__init__
(queries, docs[, query_ids, ...])Attributes
doc_ids
qrels
query_ids
targets
queries
docs