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Abstract—Documents, sentences and words clustering are well
studied problems. Most existing algorithms cluster documents,
sentences and words separately but not simultaneously. However,
when analyzing large textual corpuses, the amount of data to be
processed in a single machine is usually limited by the main
memory available, and the increase of these data to be analyzed
leads to increasing computational workload. In this paper we
present a parallel fuzzy triadic similarity measure called PFT-
Sim, to calculate fuzzy memberships in a context of document
co-clustering based on a parallel programming architecture. It
allows computing simultaneously fuzzy co-similarity matrices
between documents/sentences and sentences/words. Each one is
built on the basis of the others. The PFT-SIM model provides
a parallel data analysis strategy and divides the similarity
computing task into parallel sub-tasks to tackle efficiency and
scalability problems.

Keywords-Text Mining, Document co-clustering, Fuzzy sets,
multi-thread architecture, Parallel computing, Three-partite
graph.

I. INTRODUCTION

In recent years, text mining has gradually become a new
research topic. The study of text clustering has thus attracted
wide attention. It arranges document items into several groups
so that similar items fall into the same group. Several methods
have been proposed, first to analyze these textual corpuses
by classifying them and, later, to facilitate their exploitation.
Their aim is to organize documents into groups (or clusters),
where each cluster represents a different topic. They are
based on three concepts: data representation model, similarity
measure and clustering model. In this paper, we focus on
the preprocessing step which includes data representation and
similarity computing.

Most of the proposed models were originally designed for
relatively small data sets. However, in recent years, clustering
algorithms has been extended to work efficiently in large data
sets. When used to classify these data sets, clustering models
are very computing demanding and require high-performance
machines to get results in reasonable time. Thus, scalable
parallel computers can provide the appropriate setting to
execute clustering of algorithms in order to extract knowledge
from large-scale data repositories.

To achieve a more accurate document clustering, a more in-
formative feature word-sentence has been considered in recent

research work [1]. While considering three levels (documents-
sentences-words) based on k-partite graph [2], to represent
the data set, we are able to deal with a dependency between
all of them. The sentence-word-based document similarity (or
triadic co-similarity) considers a weighting scheme, based on
a fuzzification controller process, for computing the document
co-similarity.

The contribution of this research is to combine fuzzy
sets [3] in the document preprocessing step describing the
design of a parallelization strategy, while taking into account
three abstraction levels (Documents-Sentences-Words) to more
precisely determine the pertinent memberships. The fuzzy
similarity matrices are used to calculate Parallel fuzzy triadic
similarity, called PFT-Sim, between documents, sentences and
words based on parallel algorithms. Hence, these similarities
are considered as a preprocessing step to clustering and it
becomes possible to choose the clustering method such as K-
means [4], Fuzzy-C-Means (FCM) [5] etc. that is best suited
to co-cluster the data.

The rest of the paper is organized as follows: in section
2 we highlight related work on distributed text mining. In
section 3 we describe the parallel fuzzy triadic computing
for document similarity. Section 4 presents the task-based
parallel computing. Section 5 describes the data-based parallel
architecture. Section 6 concludes the paper and mentions our
future work.

II. DISTRIBUTED TEXT MINING

Analyzing huge textual corpuses is the source of two
challenges. Firstly, the amount of data to be processed in
a single machine is usually limited by the main memory
available. Secondly, the increase of the amount of data to be
analyzed leads to an increasing computational workload. Thus,
it is imperative to find a solution which overcomes the memory
limitation (by splitting the data into several pieces) and to
markedly reduce the runtime by distributing the workload
across available computing resources (CPU cores or cloud
instances).

Recently there has been an increasing interest in parallel
implementations of data clustering algorithms. In [6], a dis-
tributed programming model and a corresponding implementa-
tion called MapReduce has been proposed. It allows efficient



parallel processing of data in a functional programming. In
[1]a preprocessing and indexing methods for phrases, paired
with new search techniques for the top-k most interesting
phrases in ad-hoc subsets of the corpus are developed.

In [7], an approach has been proposed which applies the
distributed programming paradigm MapReduce to advance
performance of suitable text mining tasks. It showed that dis-
tributed memory systems can be effectively employed within
this model to preprocess large data sets by adding layers to
existing text mining infrastructure.

However, in many applications, databases involving more
than two types of interacting objects, or simply related, are also
frequent. A simple way to represent such data sets is to use as
many matrices as there are relations between the objects. Then,
one could use classical co-clustering methods to separately
cluster the objects occurring in the different matrices.In this
way,however, interactions between objects are not taken into
account, thus leading to a loss of information. Therefore,
handling the views together, referenced as the multi-view
clustering task, is an interesting challenge in the learning
domain to resolve the limits of classical clustering.

Many extensions to the clustering methods have been pro-
posed to deal with multi-view data. In [8], they describe an
extension of k-means (MVKM) and of EM algorithms using
a multi-view model. In [9] and [10] the authors build clusters
from multiple similarity matrices computed along different
views. In [11], a co-clustering system called MVSC has been
proposed. It permits a multi-view spectral clustering while
using the co-training that has been widely used in semi-
supervised learning problems. The general idea is to learn the
clustering in one view and use it to label the data in another
view so as to modify the graph structure (similarity matrix).

Closer to our approach, some works aim at combining
multiple similarity matrices to perform a given learning task.
The MVSim architecture [12] which is an extension of the X-
Sim algorithm [13], adapts the previous algorithm to the multi-
view context. The basic idea is to create a learning network
isomorphic to these data set structures.

III. PFT-SIM: PARALLEL FUZZY TRIADIC DOCUMENT
SIMILARITY

Document clustering should be based not only on analysis
of single words, but of sentences as well. Sentence-based
analysis means that the similarity between documents should
be based on matching sentences rather than single words only.
Parallel algorithms are able to work on partitioned data. In this
context,we propose a parallel architecture where we combine
fuzzy sets [3] in the document preprocessing step while taking
into account the three abstraction levels Documents-Sentences-
Words to more precisely determine the pertinent memberships
[14].

Given S̃D = [µ]ji a fuzzy Sentences×Documents similarity
matrix of J (sentences) by I (documents) (i = 1..I, j = 1..J),
representing the membership degrees associated to the ith

document according to the jth sentence and W̃S = [µ]kj
a fuzzy Words× Sentences similarity matrix of K (words or

terms) by J (sentences)(k = 1..K, j = 1..J), representing
the membership degrees associated to the kth word to the
jth sentence. Let H be the number of local data sources, to
each one corresponds one local matrix S̃D

(h)
= [µ]ji and

W̃S
(h)

= [µ]kj(h = 1, ..., H). These values are determined
by proceeding to a fuzzification controller process. It converts
crisp values to fuzzy ones. The conversion to fuzzy values is
represented by the membership functions [15]. The mathemat-
ical formulations of these functions are given in the following
equations.

S̃Di = [µ]ji =

{
1, if SDji ≥ Li
SDji−Ui
Ui−Li

, if Li < SDji < Ui

0, if SDji ≤ Li

(1)

and

W̃Sj = [µ]kj =

{
1, if WSkj ≥ Li
WSkj−Ui

Ui−Li
, if Li < WSkj < Ui

0, if WSkj ≤ Li

(2)

For each iteration t (t = 0..it), we process three fuzzy
co-similarity matrices of Document×Document called D̃

{t}
2 ,

Sentence×Sentence called S̃
{t}
2 and Word×Word called W̃

{t}
2

containing [µ]
{t}
lm having respectively (l = 1..I, m =

1..I),(l = 1..J, m = 1..J) and (l = 1..K, m = 1..K).
While taking into account these notations we can, for example,
express fuzzy co-similarity matrix of documents in the 2nd site
during the 3rd iteration as (D̃(2)){3}.

IV. TASK-BASED PARALLELISM

There are two main problems of processing huge corpuses:
the long processing time and the huge amount of memory
required. Fortunately, corpus processing has in general a par-
allel nature and the majority of matrix operations can be easily
decomposed into operations performed on matrix parts. In this
section we will present parallel algorithms to compute the
fuzzy co-similarity matrices. A natural way of task distribution
among multiple threads during matrix construction is the
definition of the matrix columns as sub-matrices treated in
parallel on each local site.

Before proceeding to parallel fuzzy triadic computing, we
must initialize Document × Document, Sentence × Sentence
and Word × Word matrices with the identity ones noted D̃

{0}
2 ,

S̃
{0}
2 and W̃

{0}
2 . We consider only the similarity between a

document (resp. sentence and word) and itself as maximal.
All others values are initialized with zero. Figure 1 shows
the general chart of the task-based parallelism. It shows two
levels of parallelism, the first one concerns the processing
of each of D̃2, S̃2 and W̃2 simultaneously. The second
level of parallelism concerns the task distribution of matrix
construction considering all sub-matrices (columns) in parallel.

A. D̃
{t}
2 Parallel Computing

Usually, the similarity measure between two documents Dl

and Dm is defined as a function that is the sum of the similar-
ities between shared sentences. Our idea is to generalize this
function in order to take into account the intersection between



Fig. 1. Task-based parallelism.

all the possible pairs of sentences occurring in documents
Dl and Dm. In this way, not only can we capture the fuzzy
similarity of their common sentences but also the fuzzy ones
coming from sentences that are not directly common in the
documents but are shared with some other documents. For
each pair of sentences not directly shared by the documents,
we need to take into account the fuzzy similarity between them
as provided by S̃

(t−1)
2 . Figure 2 shows the D̃

(t)
2 computing

process.

Fig. 2. D̃
{t}
2 computing process.

Thus, δ{t}l,m, except the case l = m, can be formulated as
follows:

δ
{t}
l,m

=

J∑
i=1

J∑
j=1

min(µil, µjm) ∗ α
S̃2

{t−1}

ij
(3)

The D̃
{t}
2 parallel computing is presented in algorithm 1.

B. S̃
{t}
2 Parallel Computing

Similarly, for each pair of words not directly shared by the
sentences, we need to take into account the fuzzy similarity
between them as provided by W̃

{t−1})
2 . The overall fuzzy

similarity between documents Sl and Sm is defined in the
following equation:

α
{t}
l,m

= Min[
∑I

i=1

∑I

j=1
min(µil, µjm)δD̃2

{t−1}

ij

Algorithm 1 D̃
{t}
2 Parallel Computing

Require: S̃D,S̃{t−1}
2

Ensure: D̃
{t}
2

1: for all l = 1..I do in parallel
2: for m : l..I do
3: D̃

{t}
2 [l,m] ←− δ

{t}
l,m

equation (3)
4: end for
5: end for

K∑
i=1

K∑
j=1

min(µil, µjm)ωW̃2
{t−1}

ij ] (4)

The S̃
{t}
2 Parallel Computing is presented in algorithm 2.

Algorithm 2 S̃
{t}
2 Parallel Computing

Require: S̃D,D̃(t−1)
2 W̃S,W̃ {t−1}

2

Ensure: S̃
{t}
2

1: for all l = 1..J do in parallel
2: for m : l..J do
3: S̃

{t}
2 [l,m] ←− α

{t}
l,m

equation (4)
4: end for
5: end for

C. W̃
{t}
2 Parallel Computing

For each pair of words not directly shared by the sentences,
we need to take into account the fuzzy similarity between them
as provided by W̃

{t−1}
2 . The overall fuzzy similarity between

documents Wl and Wm is defined in the following equation:

ω
{t}
l,m

=

J∑
i=1

J∑
j=1

min(µil, µjm) ∗ αS̃2
{t−1}

ij (5)

The W̃
{t}
2 parallel computing is presented in algorithm 3.

Algorithm 3 W̃
{t}
2 Parallel Computing

Require: S̃
{t−1}
2 W̃S,

Ensure: W̃
{t}
2

1: for all l = 1..K do in parallel
2: for m : l..K do
3: W̃

{t}
2 [l,m] ←− ω

{t}
l,m

equation (5)
4: end for
5: end for

D. Task-Parallel Fuzzy Triadic algorithm

The Fuzzy triadic algorithm proposed is based on an iter-
ative approach, in which each iteration t consists in evaluat-
ing the similarities according to documents/sentences/words
three-partite graph. As it is shown in figure1 the steps
computing,D̃{t}

2 , S̃
{t}
2 and W̃

{t}
2 are done in parallel. The

global task-parallel fuzzy triadic similarity computing is de-
scribed in algorithm 4.



Algorithm 4 Task-Parallel Fuzzy Triadic Algorithm

Require: S̃D, W̃S, It
Ensure: D̃

{t}
2 , S̃{t}

2 , W̃ {t}
2

1: D̃
{0}
2 ← Identity, S̃{0}

2 ← Identity, W̃ {0}
2 ← Identity

2: for t = 1..It do
3: D̃

{t}
2 parallel computing with S̃

{t−1}
2 (algorithm1)

4: S̃
{t}
2 parallel computing with D̃

{t−1}
2 and W̃

{t−1}
2 (algorithm2)

5: W̃
{t}
2 parallel computing with S̃

{t−1}
2 (algorithm3)

6: end for

V. DATA-BASED PARALLELISM

In order to reduce the complexity of the problem of treating
huge databases, it is possible to split a given data matrix
into a collection of smaller ones, each sub-matrix becoming a
component of our network and processed as a separate view.
The splitting strategy can be random or use a rapid clustering
algorithm. The first alternative presents a solution which is
based on no strategy. There is no guarantee to obtain an
interesting matrix for an optimal processing by varying the
number of splits randomly. Thus, we cannot deduct rules to
be applied to this kind of problem.The second alternative to
split a given data set, is to adopt the FCM algorithm [5].

A. FCM-based split

The FT-Sim is the exploitation of the trial nature of the
problem of similarity. That means the relationship between
groups of sentences that occur in a group of documents and
the relationship between groups of words that occur in a
group of sentences. Thus, documents are considered similar
and hence grouped together, if they contain similar sentences,
and sentences in turn are considered similar and therefore
grouped together, if they occur in similar documents, etc. The
idea behind this method is proceeding a rapid clustering of
sentences before construction of the sub-matrices for each
core. We can already obtain groups of similar sentences. This
will facilitate the following task which is the parallel co-
similarity learning.

The aim of our proposition is the unsupervised data cluster-
ing while adopting a fuzzy partitioned-based strategy. Fuzzy
clustering methods allow objects to belong to several clusters
simultaneously, with different degrees of membership. The
data set X = {X1, .., XN} ⊂ RM is thus partitioned into
c fuzzy subsets. The result is the partition matrix U = [µ]ji
for i = 1, .., N and j = 1, ..., c.

Thus, the FCM can be used to obtain a set of clusters
with similar sentences. In this way we can exploit results to
construct sub-matrices Documents × Sentences and Sentences
× Words with similar sentences, with the aim to have more
coherent matrices. Dividing a huge database into smaller ones
can considerably reduce the time and the complexity of the
computing. We must also consider the complexity of the
FCM run, which does not constitute a problem, because FCM
is considered as rapid compared with the other clustering
methods. Our solution allows a gain in time of execution for
the following task which is the co-similarity learning.

B. Splitting-based parallel architecture

Our proposition is to divide huge data set (S̃D or W̃S)
into several sub-matrices processed independently. These Sub-
matrices are processed in parallel, on different local sites, and
next the partial results are merged using controlled functions.
Figure 3 shows the splitting-based parallel architecture.

Fig. 3. Splitting-based parallel architecture.

In this topology, all local FT−Sim(i) instances (i = 1..H)

are run in parallel, then the similarity matrices D̃
(i)
2 are

simultaneously updated with an aggregation function. This
policy offers the benefit that all the instances of FT −Sim(i)

have the same influence.
The aggregation function takes H matrices (D̃

(1)
2 ){t},

(D̃
(2)
2 ){t},..,(D̃(H)

2 ){t} issue from each data source i for a
given iteration t. If a given document does not appear in
a single local data source, then we assign its corresponding
similarity measures directly in D̃2. If a particular document
appears in several different local data sources, we assign the
minimum of all similarity measures relevant to this document
to D̃2 without taking into account the value of 0. The different
steps of aggregation computing are presented in algorithm 5.

So, for a given iteration t, each instance FT −Sim(i) pro-
duces its own similarity matrix (D̃

(i)
2 ){t}. We thus get a set of

output similarity matrices {(D̃(1)
2 ){t}, (D̃(2)

2 ){t},..,(D̃(H)
2 ){t}}

the cardinal of which being equal to the number of local data
sets related to H . Therefore, we use the aggregation function
denoted by

⊗
and developed in the aggregation function to

compute a consensus similarity matrix merging all of the
{(D̃(1)

2 ){t}, (D̃
(2)
2 ){t},..,(D̃(H)

2 ){t}} with the current matrix
D̃

{t}
2 .
In turn, this resulting consensus matrix is connected to the

inputs of all the FT − Sim(i) instances, to be taken into



Algorithm 5 Aggregation Function

Require: Collection of H matrices {(D̃(1)
2 ){t},..., (D̃(H)

2 ){t}}
Ensure: D̃2

1: I ← Compute the number of documents in {(D̃(1)
2 ){t}, (D̃(2)

2 ){t},..,
(D̃

(H)
2 ){t}}

2: Let D̃2 = [µl,m] (l = 1..I and m = 1..I)

3: D̃2 ← Identity
4: for Each document Dl of D̃2 do
5: if Dl Appear in only one data set s then
6: µl,∗ ← µ

(s)
l,∗

7: else
8: µl,∗ ← min( All µ(i)

l,∗) i ∈ { sites where Dl appear} with µ
(i)
l,∗ ̸= 0

9: end if
10: end for

account in the t+ 1th iteration, thus creating feedback loops
allowing the system to spread the knowledge provided by each
(D̃

(i)
2 ){t} within the network. The parallel splitting-based steps

are presented in algorithm 6.

Algorithm 6 Parallel splitting-based algorithm

Require: Collection of matrices S̃D
(i)

, W̃S
(i)

(i = 1..H), T
Ensure: D̃2

1: for all i do
2: ((D̃(i)

2 ){0}, (S̃(i)
2 ){0} , (W̃ (i)

2 ){0})← Identity
3: for i = 1..T do
4: Execute every FT − Sim(i) with S̃D

(i)
, W̃S

(i)
and t = 1

5: (D̃2){t} ← Aggregation of all (D̃[i)
2 ){t}

6: Update each (D̃
[i)
2 ){t}

7: end for
8: end for

The complexity of this architecture is obviously related to
that of the FT − Sim(i) algorithm. In the parallel splitting-
based architecture, as each instance of FT − Sim(i) can run
on an independent core, the method can easily be parallelized,
thus keeping the global complexity unchanged (considering the
number of iterations as a constant factor). So, the complexity
of the aggregation function can be ignored.

By splitting a matrix, we lose some information. The
solution does not compute the co-similarities between all pairs
of sentences but only between the words occurring in each
S̃D

i
. Thanks to the feedback loops of this architecture and

to the presence of the common similarity matrix D̃2, we will
be able to spread the information through the network and
alleviate the problem of inter-matrix comparisons. Thus, by
using a parallel version of FT − Sim(i) on H cores, we
will gain both in time and space complexity: indeed,the time
complexity decreases, leading to an overall gain of 1/H2 .
In the same way, the memory needed to store the similarity
matrices between words will decrease by a 1/H factor.

VI. CONCLUSION

In this paper, a parallel fuzzy triadic similarity model for
the co-clustering task has been proposed. It is based on a
parallel architecture to tackle problems of big dimensions of
matrix analysis and computational workload. This provides

some interesting properties that allow a simple parallelization
of the processes.

The idea is to iteratively take into account three parallel
abstraction levels. The sentences consisting of one or more
words are used to designate the fuzzy co-similarity of two
documents. They give an ownership of words-sentences mem-
berships in accordance with the size of a document. This can
deal with the uncertainty associated with co-clustering. This
ensures a good interpretation of the result of the co-clustering
method which does not need to cluster the words-sentences to
cluster the documents.

This model needs to take advantage of the multi-
core/multiprocessor technologies which enable massively par-
allel processing. We propose to adopt the massively parallel
application bus (MPAB) proposed in [16] which is a sort of
ESB(Enterprise Service Bus). This will constitute our future
work.
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